Skip site navigation (1)Skip section navigation (2)
Date:      Thu, 1 Mar 2012 06:31:01 GMT
From:      Oleksandr Tymoshenko <gonzo@FreeBSD.org>
To:        Perforce Change Reviews <perforce@FreeBSD.org>
Subject:   PERFORCE change 207150 for review
Message-ID:  <201203010631.q216V1V8085784@skunkworks.freebsd.org>

next in thread | raw e-mail | index | archive | help
http://p4web.freebsd.org/@@207150?ac=10

Change 207150 by gonzo@gonzo_thinkpad on 2012/03/01 06:30:54

	- Remove SPARC fasttrap code and replace it with placeholder text

Affected files ...

.. //depot/projects/dtrace-mips/sys/cddl/contrib/opensolaris/uts/mips/dtrace/fasttrap_isa.c#4 edit

Differences ...

==== //depot/projects/dtrace-mips/sys/cddl/contrib/opensolaris/uts/mips/dtrace/fasttrap_isa.c#4 (text+ko) ====

@@ -24,1574 +24,7 @@
  * Use is subject to license terms.
  */
 
-#pragma ident	"%Z%%M%	%I%	%E% SMI"
 
-#include <sys/fasttrap_isa.h>
-#include <sys/fasttrap_impl.h>
-#include <sys/dtrace.h>
-#include <sys/dtrace_impl.h>
-#include <sys/cmn_err.h>
-#include <sys/frame.h>
-#include <sys/stack.h>
-#include <sys/sysmacros.h>
-#include <sys/trap.h>
-
-#include <v9/sys/machpcb.h>
-#include <v9/sys/privregs.h>
-
 /*
- * Lossless User-Land Tracing on SPARC
- * -----------------------------------
- *
- * The Basic Idea
- *
- * The most important design constraint is, of course, correct execution of
- * the user thread above all else. The next most important goal is rapid
- * execution. We combine execution of instructions in user-land with
- * emulation of certain instructions in the kernel to aim for complete
- * correctness and maximal performance.
- *
- * We take advantage of the split PC/NPC architecture to speed up logical
- * single-stepping; when we copy an instruction out to the scratch space in
- * the ulwp_t structure (held in the %g7 register on SPARC), we can
- * effectively single step by setting the PC to our scratch space and leaving
- * the NPC alone. This executes the replaced instruction and then continues
- * on without having to reenter the kernel as with single- stepping. The
- * obvious caveat is for instructions whose execution is PC dependant --
- * branches, call and link instructions (call and jmpl), and the rdpc
- * instruction. These instructions cannot be executed in the manner described
- * so they must be emulated in the kernel.
- *
- * Emulation for this small set of instructions if fairly simple; the most
- * difficult part being emulating branch conditions.
- *
- *
- * A Cache Heavy Portfolio
- *
- * It's important to note at this time that copying an instruction out to the
- * ulwp_t scratch space in user-land is rather complicated. SPARC has
- * separate data and instruction caches so any writes to the D$ (using a
- * store instruction for example) aren't necessarily reflected in the I$.
- * The flush instruction can be used to synchronize the two and must be used
- * for any self-modifying code, but the flush instruction only applies to the
- * primary address space (the absence of a flusha analogue to the flush
- * instruction that accepts an ASI argument is an obvious omission from SPARC
- * v9 where the notion of the alternate address space was introduced on
- * SPARC). To correctly copy out the instruction we must use a block store
- * that doesn't allocate in the D$ and ensures synchronization with the I$;
- * see dtrace_blksuword32() for the implementation  (this function uses
- * ASI_BLK_COMMIT_S to write a block through the secondary ASI in the manner
- * described). Refer to the UltraSPARC I/II manual for details on the
- * ASI_BLK_COMMIT_S ASI.
- *
- *
- * Return Subtleties
- *
- * When we're firing a return probe we need to expose the value returned by
- * the function being traced. Since the function can set the return value
- * in its last instruction, we need to fire the return probe only _after_
- * the effects of the instruction are apparent. For instructions that we
- * emulate, we can call dtrace_probe() after we've performed the emulation;
- * for instructions that we execute after we return to user-land, we set
- * %pc to the instruction we copied out (as described above) and set %npc
- * to a trap instruction stashed in the ulwp_t structure. After the traced
- * instruction is executed, the trap instruction returns control to the
- * kernel where we can fire the return probe.
- *
- * This need for a second trap in cases where we execute the traced
- * instruction makes it all the more important to emulate the most common
- * instructions to avoid the second trip in and out of the kernel.
- *
- *
- * Making it Fast
- *
- * Since copying out an instruction is neither simple nor inexpensive for the
- * CPU, we should attempt to avoid doing it in as many cases as possible.
- * Since function entry and return are usually the most interesting probe
- * sites, we attempt to tune the performance of the fasttrap provider around
- * instructions typically in those places.
- *
- * Looking at a bunch of functions in libraries and executables reveals that
- * most functions begin with either a save or a sethi (to setup a larger
- * argument to the save) and end with a restore or an or (in the case of leaf
- * functions). To try to improve performance, we emulate all of these
- * instructions in the kernel.
- *
- * The save and restore instructions are a little tricky since they perform
- * register window maniplulation. Rather than trying to tinker with the
- * register windows from the kernel, we emulate the implicit add that takes
- * place as part of those instructions and set the %pc to point to a simple
- * save or restore we've hidden in the ulwp_t structure. If we're in a return
- * probe so want to make it seem as though the tracepoint has been completely
- * executed we need to remember that we've pulled this trick with restore and
- * pull registers from the previous window (the one that we'll switch to once
- * the simple store instruction is executed) rather than the current one. This
- * is why in the case of emulating a restore we set the DTrace CPU flag
- * CPU_DTRACE_FAKERESTORE before calling dtrace_probe() for the return probes
- * (see fasttrap_return_common()).
- */
-
-#define	OP(x)		((x) >> 30)
-#define	OP2(x)		(((x) >> 22) & 0x07)
-#define	OP3(x)		(((x) >> 19) & 0x3f)
-#define	RCOND(x)	(((x) >> 25) & 0x07)
-#define	COND(x)		(((x) >> 25) & 0x0f)
-#define	A(x)		(((x) >> 29) & 0x01)
-#define	I(x)		(((x) >> 13) & 0x01)
-#define	RD(x)		(((x) >> 25) & 0x1f)
-#define	RS1(x)		(((x) >> 14) & 0x1f)
-#define	RS2(x)		(((x) >> 0) & 0x1f)
-#define	CC(x)		(((x) >> 20) & 0x03)
-#define	DISP16(x)	((((x) >> 6) & 0xc000) | ((x) & 0x3fff))
-#define	DISP22(x)	((x) & 0x3fffff)
-#define	DISP19(x)	((x) & 0x7ffff)
-#define	DISP30(x)	((x) & 0x3fffffff)
-#define	SW_TRAP(x)	((x) & 0x7f)
-
-#define	OP3_OR		0x02
-#define	OP3_RD		0x28
-#define	OP3_JMPL	0x38
-#define	OP3_RETURN	0x39
-#define	OP3_TCC		0x3a
-#define	OP3_SAVE	0x3c
-#define	OP3_RESTORE	0x3d
-
-#define	OP3_PREFETCH	0x2d
-#define	OP3_CASA	0x3c
-#define	OP3_PREFETCHA	0x3d
-#define	OP3_CASXA	0x3e
-
-#define	OP2_ILLTRAP	0x0
-#define	OP2_BPcc	0x1
-#define	OP2_Bicc	0x2
-#define	OP2_BPr		0x3
-#define	OP2_SETHI	0x4
-#define	OP2_FBPfcc	0x5
-#define	OP2_FBfcc	0x6
-
-#define	R_G0		0
-#define	R_O0		8
-#define	R_SP		14
-#define	R_I0		24
-#define	R_I1		25
-#define	R_I2		26
-#define	R_I3		27
-#define	R_I4		28
-
-/*
- * Check the comment in fasttrap.h when changing these offsets or adding
- * new instructions.
+ *	XXX: Placeholder for MISP fasttrap code
  */
-#define	FASTTRAP_OFF_SAVE	64
-#define	FASTTRAP_OFF_RESTORE	68
-#define	FASTTRAP_OFF_FTRET	72
-#define	FASTTRAP_OFF_RETURN	76
-
-#define	BREAKPOINT_INSTR	0x91d02001	/* ta 1 */
-
-/*
- * Tunable to let users turn off the fancy save instruction optimization.
- * If a program is non-ABI compliant, there's a possibility that the save
- * instruction optimization could cause an error.
- */
-int fasttrap_optimize_save = 1;
-
-static uint64_t
-fasttrap_anarg(struct regs *rp, int argno)
-{
-	uint64_t value;
-
-	if (argno < 6)
-		return ((&rp->r_o0)[argno]);
-
-	if (curproc->p_model == DATAMODEL_NATIVE) {
-		struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
-
-		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
-		value = dtrace_fulword(&fr->fr_argd[argno]);
-		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR |
-		    CPU_DTRACE_BADALIGN);
-	} else {
-		struct frame32 *fr = (struct frame32 *)rp->r_sp;
-
-		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
-		value = dtrace_fuword32(&fr->fr_argd[argno]);
-		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR |
-		    CPU_DTRACE_BADALIGN);
-	}
-
-	return (value);
-}
-
-static ulong_t fasttrap_getreg(struct regs *, uint_t);
-static void fasttrap_putreg(struct regs *, uint_t, ulong_t);
-
-static void
-fasttrap_usdt_args(fasttrap_probe_t *probe, struct regs *rp,
-    uint_t fake_restore, int argc, uintptr_t *argv)
-{
-	int i, x, cap = MIN(argc, probe->ftp_nargs);
-	int inc = (fake_restore ? 16 : 0);
-
-	/*
-	 * The only way we'll hit the fake_restore case is if a USDT probe is
-	 * invoked as a tail-call. While it wouldn't be incorrect, we can
-	 * avoid a call to fasttrap_getreg(), and safely use rp->r_sp
-	 * directly since a tail-call can't be made if the invoked function
-	 * would use the argument dump space (i.e. if there were more than
-	 * 6 arguments). We take this shortcut because unconditionally rooting
-	 * around for R_FP (R_SP + 16) would be unnecessarily painful.
-	 */
-
-	if (curproc->p_model == DATAMODEL_NATIVE) {
-		struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
-		uintptr_t v;
-
-		for (i = 0; i < cap; i++) {
-			x = probe->ftp_argmap[i];
-
-			if (x < 6)
-				argv[i] = fasttrap_getreg(rp, R_O0 + x + inc);
-			else if (fasttrap_fulword(&fr->fr_argd[x], &v) != 0)
-				argv[i] = 0;
-		}
-
-	} else {
-		struct frame32 *fr = (struct frame32 *)rp->r_sp;
-		uint32_t v;
-
-		for (i = 0; i < cap; i++) {
-			x = probe->ftp_argmap[i];
-
-			if (x < 6)
-				argv[i] = fasttrap_getreg(rp, R_O0 + x + inc);
-			else if (fasttrap_fuword32(&fr->fr_argd[x], &v) != 0)
-				argv[i] = 0;
-		}
-	}
-
-	for (; i < argc; i++) {
-		argv[i] = 0;
-	}
-}
-
-static void
-fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
-    uint_t fake_restore)
-{
-	fasttrap_tracepoint_t *tp;
-	fasttrap_bucket_t *bucket;
-	fasttrap_id_t *id;
-	kmutex_t *pid_mtx;
-	dtrace_icookie_t cookie;
-
-	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
-	mutex_enter(pid_mtx);
-	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
-
-	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
-		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
-		    tp->ftt_proc->ftpc_acount != 0)
-			break;
-	}
-
-	/*
-	 * Don't sweat it if we can't find the tracepoint again; unlike
-	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
-	 * is not essential to the correct execution of the process.
-	 */
-	if (tp == NULL || tp->ftt_retids == NULL) {
-		mutex_exit(pid_mtx);
-		return;
-	}
-
-	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
-		fasttrap_probe_t *probe = id->fti_probe;
-
-		if (id->fti_ptype == DTFTP_POST_OFFSETS) {
-			if (probe->ftp_argmap != NULL && fake_restore) {
-				uintptr_t t[5];
-
-				fasttrap_usdt_args(probe, rp, fake_restore,
-				    sizeof (t) / sizeof (t[0]), t);
-
-				cookie = dtrace_interrupt_disable();
-				DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
-				dtrace_probe(probe->ftp_id, t[0], t[1],
-				    t[2], t[3], t[4]);
-				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
-				dtrace_interrupt_enable(cookie);
-
-			} else if (probe->ftp_argmap != NULL) {
-				uintptr_t t[5];
-
-				fasttrap_usdt_args(probe, rp, fake_restore,
-				    sizeof (t) / sizeof (t[0]), t);
-
-				dtrace_probe(probe->ftp_id, t[0], t[1],
-				    t[2], t[3], t[4]);
-
-			} else if (fake_restore) {
-				uintptr_t arg0 = fasttrap_getreg(rp, R_I0);
-				uintptr_t arg1 = fasttrap_getreg(rp, R_I1);
-				uintptr_t arg2 = fasttrap_getreg(rp, R_I2);
-				uintptr_t arg3 = fasttrap_getreg(rp, R_I3);
-				uintptr_t arg4 = fasttrap_getreg(rp, R_I4);
-
-				cookie = dtrace_interrupt_disable();
-				DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
-				dtrace_probe(probe->ftp_id, arg0, arg1,
-				    arg2, arg3, arg4);
-				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
-				dtrace_interrupt_enable(cookie);
-
-			} else {
-				dtrace_probe(probe->ftp_id, rp->r_o0, rp->r_o1,
-				    rp->r_o2, rp->r_o3, rp->r_o4);
-			}
-
-			continue;
-		}
-
-		/*
-		 * If this is only a possible return point, we must
-		 * be looking at a potential tail call in leaf context.
-		 * If the %npc is still within this function, then we
-		 * must have misidentified a jmpl as a tail-call when it
-		 * is, in fact, part of a jump table. It would be nice to
-		 * remove this tracepoint, but this is neither the time
-		 * nor the place.
-		 */
-		if ((tp->ftt_flags & FASTTRAP_F_RETMAYBE) &&
-		    rp->r_npc - probe->ftp_faddr < probe->ftp_fsize)
-			continue;
-
-		/*
-		 * It's possible for a function to branch to the delay slot
-		 * of an instruction that we've identified as a return site.
-		 * We can dectect this spurious return probe activation by
-		 * observing that in this case %npc will be %pc + 4 and %npc
-		 * will be inside the current function (unless the user is
-		 * doing _crazy_ instruction picking in which case there's
-		 * very little we can do). The second check is important
-		 * in case the last instructions of a function make a tail-
-		 * call to the function located immediately subsequent.
-		 */
-		if (rp->r_npc == rp->r_pc + 4 &&
-		    rp->r_npc - probe->ftp_faddr < probe->ftp_fsize)
-			continue;
-
-		/*
-		 * The first argument is the offset of return tracepoint
-		 * in the function; the remaining arguments are the return
-		 * values.
-		 *
-		 * If fake_restore is set, we need to pull the return values
-		 * out of the %i's rather than the %o's -- a little trickier.
-		 */
-		if (!fake_restore) {
-			dtrace_probe(probe->ftp_id, pc - probe->ftp_faddr,
-			    rp->r_o0, rp->r_o1, rp->r_o2, rp->r_o3);
-		} else {
-			uintptr_t arg0 = fasttrap_getreg(rp, R_I0);
-			uintptr_t arg1 = fasttrap_getreg(rp, R_I1);
-			uintptr_t arg2 = fasttrap_getreg(rp, R_I2);
-			uintptr_t arg3 = fasttrap_getreg(rp, R_I3);
-
-			cookie = dtrace_interrupt_disable();
-			DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
-			dtrace_probe(probe->ftp_id, pc - probe->ftp_faddr,
-			    arg0, arg1, arg2, arg3);
-			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
-			dtrace_interrupt_enable(cookie);
-		}
-	}
-
-	mutex_exit(pid_mtx);
-}
-
-int
-fasttrap_pid_probe(struct regs *rp)
-{
-	proc_t *p = curproc;
-	fasttrap_tracepoint_t *tp, tp_local;
-	fasttrap_id_t *id;
-	pid_t pid;
-	uintptr_t pc = rp->r_pc;
-	uintptr_t npc = rp->r_npc;
-	uintptr_t orig_pc = pc;
-	fasttrap_bucket_t *bucket;
-	kmutex_t *pid_mtx;
-	uint_t fake_restore = 0, is_enabled = 0;
-	dtrace_icookie_t cookie;
-
-	/*
-	 * It's possible that a user (in a veritable orgy of bad planning)
-	 * could redirect this thread's flow of control before it reached the
-	 * return probe fasttrap. In this case we need to kill the process
-	 * since it's in a unrecoverable state.
-	 */
-	if (curthread->t_dtrace_step) {
-		ASSERT(curthread->t_dtrace_on);
-		fasttrap_sigtrap(p, curthread, pc);
-		return (0);
-	}
-
-	/*
-	 * Clear all user tracing flags.
-	 */
-	curthread->t_dtrace_ft = 0;
-	curthread->t_dtrace_pc = 0;
-	curthread->t_dtrace_npc = 0;
-	curthread->t_dtrace_scrpc = 0;
-	curthread->t_dtrace_astpc = 0;
-
-	/*
-	 * Treat a child created by a call to vfork(2) as if it were its
-	 * parent. We know that there's only one thread of control in such a
-	 * process: this one.
-	 */
-	while (p->p_flag & SVFORK) {
-		p = p->p_parent;
-	}
-
-	pid = p->p_pid;
-	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
-	mutex_enter(pid_mtx);
-	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
-
-	/*
-	 * Lookup the tracepoint that the process just hit.
-	 */
-	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
-		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
-		    tp->ftt_proc->ftpc_acount != 0)
-			break;
-	}
-
-	/*
-	 * If we couldn't find a matching tracepoint, either a tracepoint has
-	 * been inserted without using the pid<pid> ioctl interface (see
-	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
-	 */
-	if (tp == NULL) {
-		mutex_exit(pid_mtx);
-		return (-1);
-	}
-
-	for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
-		fasttrap_probe_t *probe = id->fti_probe;
-		int isentry = (id->fti_ptype == DTFTP_ENTRY);
-
-		if (id->fti_ptype == DTFTP_IS_ENABLED) {
-			is_enabled = 1;
-			continue;
-		}
-
-		/*
-		 * We note that this was an entry probe to help ustack() find
-		 * the first caller.
-		 */
-		if (isentry) {
-			cookie = dtrace_interrupt_disable();
-			DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
-		}
-		dtrace_probe(probe->ftp_id, rp->r_o0, rp->r_o1, rp->r_o2,
-		    rp->r_o3, rp->r_o4);
-		if (isentry) {
-			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
-			dtrace_interrupt_enable(cookie);
-		}
-	}
-
-	/*
-	 * We're about to do a bunch of work so we cache a local copy of
-	 * the tracepoint to emulate the instruction, and then find the
-	 * tracepoint again later if we need to light up any return probes.
-	 */
-	tp_local = *tp;
-	mutex_exit(pid_mtx);
-	tp = &tp_local;
-
-	/*
-	 * If there's an is-enabled probe conntected to this tracepoint it
-	 * means that there was a 'mov %g0, %o0' instruction that was placed
-	 * there by DTrace when the binary was linked. As this probe is, in
-	 * fact, enabled, we need to stuff 1 into %o0. Accordingly, we can
-	 * bypass all the instruction emulation logic since we know the
-	 * inevitable result. It's possible that a user could construct a
-	 * scenario where the 'is-enabled' probe was on some other
-	 * instruction, but that would be a rather exotic way to shoot oneself
-	 * in the foot.
-	 */
-	if (is_enabled) {
-		rp->r_o0 = 1;
-		pc = rp->r_npc;
-		npc = pc + 4;
-		goto done;
-	}
-
-	/*
-	 * We emulate certain types of instructions to ensure correctness
-	 * (in the case of position dependent instructions) or optimize
-	 * common cases. The rest we have the thread execute back in user-
-	 * land.
-	 */
-	switch (tp->ftt_type) {
-	case FASTTRAP_T_SAVE:
-	{
-		int32_t imm;
-
-		/*
-		 * This an optimization to let us handle function entry
-		 * probes more efficiently. Many functions begin with a save
-		 * instruction that follows the pattern:
-		 *	save	%sp, <imm>, %sp
-		 *
-		 * Meanwhile, we've stashed the instruction:
-		 *	save	%g1, %g0, %sp
-		 *
-		 * off of %g7, so all we have to do is stick the right value
-		 * into %g1 and reset %pc to point to the instruction we've
-		 * cleverly hidden (%npc should not be touched).
-		 */
-
-		imm = tp->ftt_instr << 19;
-		imm >>= 19;
-		rp->r_g1 = rp->r_sp + imm;
-		pc = rp->r_g7 + FASTTRAP_OFF_SAVE;
-		break;
-	}
-
-	case FASTTRAP_T_RESTORE:
-	{
-		ulong_t value;
-		uint_t rd;
-
-		/*
-		 * This is an optimization to let us handle function
-		 * return probes more efficiently. Most non-leaf functions
-		 * end with the sequence:
-		 *	ret
-		 *	restore	<reg>, <reg_or_imm>, %oX
-		 *
-		 * We've stashed the instruction:
-		 *	restore	%g0, %g0, %g0
-		 *
-		 * off of %g7 so we just need to place the correct value
-		 * in the right %i register (since after our fake-o
-		 * restore, the %i's will become the %o's) and set the %pc
-		 * to point to our hidden restore. We also set fake_restore to
-		 * let fasttrap_return_common() know that it will find the
-		 * return values in the %i's rather than the %o's.
-		 */
-
-		if (I(tp->ftt_instr)) {
-			int32_t imm;
-
-			imm = tp->ftt_instr << 19;
-			imm >>= 19;
-			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) + imm;
-		} else {
-			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) +
-			    fasttrap_getreg(rp, RS2(tp->ftt_instr));
-		}
-
-		/*
-		 * Convert %o's to %i's; leave %g's as they are.
-		 */
-		rd = RD(tp->ftt_instr);
-		fasttrap_putreg(rp, ((rd & 0x18) == 0x8) ? rd + 16 : rd, value);
-
-		pc = rp->r_g7 + FASTTRAP_OFF_RESTORE;
-		fake_restore = 1;
-		break;
-	}
-
-	case FASTTRAP_T_RETURN:
-	{
-		uintptr_t target;
-
-		/*
-		 * A return instruction is like a jmpl (without the link
-		 * part) that executes an implicit restore. We've stashed
-		 * the instruction:
-		 *	return %o0
-		 *
-		 * off of %g7 so we just need to place the target in %o0
-		 * and set the %pc to point to the stashed return instruction.
-		 * We use %o0 since that register disappears after the return
-		 * executes, erasing any evidence of this tampering.
-		 */
-		if (I(tp->ftt_instr)) {
-			int32_t imm;
-
-			imm = tp->ftt_instr << 19;
-			imm >>= 19;
-			target = fasttrap_getreg(rp, RS1(tp->ftt_instr)) + imm;
-		} else {
-			target = fasttrap_getreg(rp, RS1(tp->ftt_instr)) +
-			    fasttrap_getreg(rp, RS2(tp->ftt_instr));
-		}
-
-		fasttrap_putreg(rp, R_O0, target);
-
-		pc = rp->r_g7 + FASTTRAP_OFF_RETURN;
-		fake_restore = 1;
-		break;
-	}
-
-	case FASTTRAP_T_OR:
-	{
-		ulong_t value;
-
-		if (I(tp->ftt_instr)) {
-			int32_t imm;
-
-			imm = tp->ftt_instr << 19;
-			imm >>= 19;
-			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) | imm;
-		} else {
-			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) |
-			    fasttrap_getreg(rp, RS2(tp->ftt_instr));
-		}
-
-		fasttrap_putreg(rp, RD(tp->ftt_instr), value);
-		pc = rp->r_npc;
-		npc = pc + 4;
-		break;
-	}
-
-	case FASTTRAP_T_SETHI:
-		if (RD(tp->ftt_instr) != R_G0) {
-			uint32_t imm32 = tp->ftt_instr << 10;
-			fasttrap_putreg(rp, RD(tp->ftt_instr), (ulong_t)imm32);
-		}
-		pc = rp->r_npc;
-		npc = pc + 4;
-		break;
-
-	case FASTTRAP_T_CCR:
-	{
-		uint_t c, v, z, n, taken;
-		uint_t ccr = rp->r_tstate >> TSTATE_CCR_SHIFT;
-
-		if (tp->ftt_cc != 0)
-			ccr >>= 4;
-
-		c = (ccr >> 0) & 1;
-		v = (ccr >> 1) & 1;
-		z = (ccr >> 2) & 1;
-		n = (ccr >> 3) & 1;
-
-		switch (tp->ftt_code) {
-		case 0x0:	/* BN */
-			taken = 0;		break;
-		case 0x1:	/* BE */
-			taken = z;		break;
-		case 0x2:	/* BLE */
-			taken = z | (n ^ v);	break;
-		case 0x3:	/* BL */
-			taken = n ^ v;		break;
-		case 0x4:	/* BLEU */
-			taken = c | z;		break;
-		case 0x5:	/* BCS (BLU) */
-			taken = c;		break;
-		case 0x6:	/* BNEG */
-			taken = n;		break;
-		case 0x7:	/* BVS */
-			taken = v;		break;
-		case 0x8:	/* BA */
-			/*
-			 * We handle the BA case differently since the annul
-			 * bit means something slightly different.
-			 */
-			panic("fasttrap: mishandled a branch");
-			taken = 1;		break;
-		case 0x9:	/* BNE */
-			taken = ~z;		break;
-		case 0xa:	/* BG */
-			taken = ~(z | (n ^ v));	break;
-		case 0xb:	/* BGE */
-			taken = ~(n ^ v);	break;
-		case 0xc:	/* BGU */
-			taken = ~(c | z);	break;
-		case 0xd:	/* BCC (BGEU) */
-			taken = ~c;		break;
-		case 0xe:	/* BPOS */
-			taken = ~n;		break;
-		case 0xf:	/* BVC */
-			taken = ~v;		break;
-		}
-
-		if (taken & 1) {
-			pc = rp->r_npc;
-			npc = tp->ftt_dest;
-		} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
-			/*
-			 * Untaken annulled branches don't execute the
-			 * instruction in the delay slot.
-			 */
-			pc = rp->r_npc + 4;
-			npc = pc + 4;
-		} else {
-			pc = rp->r_npc;
-			npc = pc + 4;
-		}
-		break;
-	}
-
-	case FASTTRAP_T_FCC:
-	{
-		uint_t fcc;
-		uint_t taken;
-		uint64_t fsr;
-
-		dtrace_getfsr(&fsr);
-
-		if (tp->ftt_cc == 0) {
-			fcc = (fsr >> 10) & 0x3;
-		} else {
-			uint_t shift;
-			ASSERT(tp->ftt_cc <= 3);
-			shift = 30 + tp->ftt_cc * 2;
-			fcc = (fsr >> shift) & 0x3;
-		}
-
-		switch (tp->ftt_code) {
-		case 0x0:	/* FBN */
-			taken = (1 << fcc) & (0|0|0|0);	break;
-		case 0x1:	/* FBNE */
-			taken = (1 << fcc) & (8|4|2|0);	break;
-		case 0x2:	/* FBLG */
-			taken = (1 << fcc) & (0|4|2|0);	break;
-		case 0x3:	/* FBUL */
-			taken = (1 << fcc) & (8|0|2|0);	break;
-		case 0x4:	/* FBL */
-			taken = (1 << fcc) & (0|0|2|0);	break;
-		case 0x5:	/* FBUG */
-			taken = (1 << fcc) & (8|4|0|0);	break;
-		case 0x6:	/* FBG */
-			taken = (1 << fcc) & (0|4|0|0);	break;
-		case 0x7:	/* FBU */
-			taken = (1 << fcc) & (8|0|0|0);	break;
-		case 0x8:	/* FBA */
-			/*
-			 * We handle the FBA case differently since the annul
-			 * bit means something slightly different.
-			 */
-			panic("fasttrap: mishandled a branch");
-			taken = (1 << fcc) & (8|4|2|1);	break;
-		case 0x9:	/* FBE */
-			taken = (1 << fcc) & (0|0|0|1);	break;
-		case 0xa:	/* FBUE */
-			taken = (1 << fcc) & (8|0|0|1);	break;
-		case 0xb:	/* FBGE */
-			taken = (1 << fcc) & (0|4|0|1);	break;
-		case 0xc:	/* FBUGE */
-			taken = (1 << fcc) & (8|4|0|1);	break;
-		case 0xd:	/* FBLE */
-			taken = (1 << fcc) & (0|0|2|1);	break;
-		case 0xe:	/* FBULE */
-			taken = (1 << fcc) & (8|0|2|1);	break;
-		case 0xf:	/* FBO */
-			taken = (1 << fcc) & (0|4|2|1);	break;
-		}
-
-		if (taken) {
-			pc = rp->r_npc;
-			npc = tp->ftt_dest;
-		} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
-			/*
-			 * Untaken annulled branches don't execute the
-			 * instruction in the delay slot.
-			 */
-			pc = rp->r_npc + 4;
-			npc = pc + 4;
-		} else {
-			pc = rp->r_npc;
-			npc = pc + 4;
-		}
-		break;
-	}
-
-	case FASTTRAP_T_REG:
-	{
-		int64_t value;
-		uint_t taken;
-		uint_t reg = RS1(tp->ftt_instr);
-
-		/*
-		 * An ILP32 process shouldn't be using a branch predicated on
-		 * an %i or an %l since it would violate the ABI. It's a
-		 * violation of the ABI because we can't ensure deterministic
-		 * behavior. We should have identified this case when we
-		 * enabled the probe.
-		 */
-		ASSERT(p->p_model == DATAMODEL_LP64 || reg < 16);
-
-		value = (int64_t)fasttrap_getreg(rp, reg);
-
-		switch (tp->ftt_code) {
-		case 0x1:	/* BRZ */
-			taken = (value == 0);	break;
-		case 0x2:	/* BRLEZ */
-			taken = (value <= 0);	break;
-		case 0x3:	/* BRLZ */
-			taken = (value < 0);	break;
-		case 0x5:	/* BRNZ */
-			taken = (value != 0);	break;
-		case 0x6:	/* BRGZ */
-			taken = (value > 0);	break;
-		case 0x7:	/* BRGEZ */
-			taken = (value >= 0);	break;
-		default:
-		case 0x0:
-		case 0x4:
-			panic("fasttrap: mishandled a branch");
-		}
-
-		if (taken) {
-			pc = rp->r_npc;
-			npc = tp->ftt_dest;
-		} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
-			/*
-			 * Untaken annulled branches don't execute the
-			 * instruction in the delay slot.
-			 */
-			pc = rp->r_npc + 4;
-			npc = pc + 4;
-		} else {
-			pc = rp->r_npc;
-			npc = pc + 4;
-		}
-		break;
-	}
-
-	case FASTTRAP_T_ALWAYS:
-		/*
-		 * BAs, BA,As...
-		 */
-
-		if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
-			/*
-			 * Annulled branch always instructions never execute
-			 * the instruction in the delay slot.
-			 */
-			pc = tp->ftt_dest;
-			npc = tp->ftt_dest + 4;
-		} else {
-			pc = rp->r_npc;
-			npc = tp->ftt_dest;
-		}
-		break;
-
-	case FASTTRAP_T_RDPC:
-		fasttrap_putreg(rp, RD(tp->ftt_instr), rp->r_pc);
-		pc = rp->r_npc;
-		npc = pc + 4;
-		break;
-
-	case FASTTRAP_T_CALL:
-		/*
-		 * It's a call _and_ link remember...
-		 */
-		rp->r_o7 = rp->r_pc;
-		pc = rp->r_npc;
-		npc = tp->ftt_dest;
-		break;
-
-	case FASTTRAP_T_JMPL:
-		pc = rp->r_npc;
-
-		if (I(tp->ftt_instr)) {
-			uint_t rs1 = RS1(tp->ftt_instr);
-			int32_t imm;
-
-			imm = tp->ftt_instr << 19;
-			imm >>= 19;
-			npc = fasttrap_getreg(rp, rs1) + imm;
-		} else {
-			uint_t rs1 = RS1(tp->ftt_instr);
-			uint_t rs2 = RS2(tp->ftt_instr);
-
-			npc = fasttrap_getreg(rp, rs1) +
-			    fasttrap_getreg(rp, rs2);
-		}
-
-		/*
-		 * Do the link part of the jump-and-link instruction.
-		 */
-		fasttrap_putreg(rp, RD(tp->ftt_instr), rp->r_pc);
-
-		break;
-
-	case FASTTRAP_T_COMMON:
-	{
-		curthread->t_dtrace_scrpc = rp->r_g7;
-		curthread->t_dtrace_astpc = rp->r_g7 + FASTTRAP_OFF_FTRET;
-
-		/*
-		 * Copy the instruction to a reserved location in the
-		 * user-land thread structure, then set the PC to that
-		 * location and leave the NPC alone. We take pains to ensure
-		 * consistency in the instruction stream (See SPARC
-		 * Architecture Manual Version 9, sections 8.4.7, A.20, and
-		 * H.1.6; UltraSPARC I/II User's Manual, sections 3.1.1.1,
-		 * and 13.6.4) by using the ASI ASI_BLK_COMMIT_S to copy the
-		 * instruction into the user's address space without
-		 * bypassing the I$. There's no AS_USER version of this ASI
-		 * (as exist for other ASIs) so we use the lofault
-		 * mechanism to catch faults.
-		 */
-		if (dtrace_blksuword32(rp->r_g7, &tp->ftt_instr, 1) == -1) {
-			/*
-			 * If the copyout fails, then the process's state
-			 * is not consistent (the effects of the traced
-			 * instruction will never be seen). This process
-			 * cannot be allowed to continue execution.
-			 */
-			fasttrap_sigtrap(curproc, curthread, pc);
-			return (0);
-		}
-
-		curthread->t_dtrace_pc = pc;
-		curthread->t_dtrace_npc = npc;
-		curthread->t_dtrace_on = 1;
-
-		pc = curthread->t_dtrace_scrpc;
-
-		if (tp->ftt_retids != NULL) {
-			curthread->t_dtrace_step = 1;
-			curthread->t_dtrace_ret = 1;
-			npc = curthread->t_dtrace_astpc;
-		}
-		break;
-	}
-
-	default:
-		panic("fasttrap: mishandled an instruction");
-	}
-
-	/*
-	 * This bit me in the ass a couple of times, so lets toss this
-	 * in as a cursory sanity check.
-	 */
-	ASSERT(pc != rp->r_g7 + 4);
-	ASSERT(pc != rp->r_g7 + 8);
-
-done:
-	/*
-	 * If there were no return probes when we first found the tracepoint,
-	 * we should feel no obligation to honor any return probes that were
-	 * subsequently enabled -- they'll just have to wait until the next
-	 * time around.
-	 */
-	if (tp->ftt_retids != NULL) {
-		/*
-		 * We need to wait until the results of the instruction are
-		 * apparent before invoking any return probes. If this
-		 * instruction was emulated we can just call
-		 * fasttrap_return_common(); if it needs to be executed, we
-		 * need to wait until we return to the kernel.
-		 */
-		if (tp->ftt_type != FASTTRAP_T_COMMON) {
-			fasttrap_return_common(rp, orig_pc, pid, fake_restore);
-		} else {
-			ASSERT(curthread->t_dtrace_ret != 0);
-			ASSERT(curthread->t_dtrace_pc == orig_pc);
-			ASSERT(curthread->t_dtrace_scrpc == rp->r_g7);
-			ASSERT(npc == curthread->t_dtrace_astpc);
-		}
-	}
-
-	ASSERT(pc != 0);
-	rp->r_pc = pc;

>>> TRUNCATED FOR MAIL (1000 lines) <<<



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201203010631.q216V1V8085784>